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This p a r t  c o n s i s t s  mainly of an a n a l y s i s  of c y c l i c  graphs t o  allow t h e  2 . 0 ~ 7  

enumeration of the r i n g  s t r u c t u r e s  of chemistry. Many chemical graphs are 

mixed, t h a t  is are trees i n  which cyc l i c  subgraphs are embedded. The complete 

r ep resen ta t ion  of such s t r u c t u r e s  i s  taken up i n  P a r t  111, and w e  w i l l  be  con- 

cerned he re  only with the  fundamentals of pure c y c l i c  graphs. 

Z.Q/ 
The most f requent  r i n g  i n  organic chemistry is t h e  simple cyc le ,  e.g., 

benzene; and these  s t r u c t u r e s  ( r ing  s t r u c t u r e s  with one r ing )  a f fo rd  no s p e c i a l  

problems as they are simple mappings of a l i n e a r  chain. A canonical  form would 

be t h e  c u t  which maximizes t h e  DENDRAL va lue  of t he  s t r i n g .  

t he  following f i g u r e s  is s e l f  evident:  

The encoding of 

0 
(-N.5) (-S. C .N. 2) 

2. G2L 

Polycycl ic  s t r u c t u r e s  such as 

STEROID NUCLEUS MORPHINE NUCLEUS NAPHTHALENE BIPHENYL 

[ 4 1  [SI 121 [ l l ,  111 
are, however, q u i t e  important and r equ i r e  a more e l abora t e  treatment.  The 

chemist  refers t o  a r ing-s t ruc ture  (o r  "ring", when the  context  makes t h i s  

. 
t 
1 

clear) f o r  a set of atoms inseparable  by a s i n g l e  cu t .  The number of r i n g s  

(bracketed above) i n  such a s t r u c t u r e  is t h e  minimum number of c u t s  needed t o  



convert the structure t o  a tree. 

at least 3-connected), this is one less than the number of faces, i.e., the 

number of cuts needed t o  separate the graph, a definition we can generalize 

to 2-connected graphs as well. 

For a polyhedron (a planar graph everywhere 

General Introduction to the Treatment of Rings. 

Attempts to process rings on a node-by-node basis like linear DENDRAL 

proved unrewarding. Ambiguities due to symmetry are usual, and many paths 

can be evaluated only by recursively searching through the entire graph. 

approach was therefore abandoned in favor of a fundamental classification of 

the possible graphs. That is, the distinct ways in which a set of nodes can 

be connected to form a cyclic graph have been calculated in advance. To apply 

these calculations to actual formulas, a number of simplifying steps are intro- 

duced : 

Zt/0 

This 

2 / / /  1. Analyze the ring into its paths and vertices (branch points). The 

classification then depends on the set of branch points, the atoms which zre 

triply connected. Organic rings rarely have more than three branches at any 

point; instances of four branches (usually called "spire" forms) can be accommo- 

dated by exception. H atoms and other substituents attached to the ring are 

ignored. 

2, /zo 2. Produce a general classification of connectivity diagrams, the trivalent 

graphs. 

arranged without isomorphic redundancies. 

most conveniently presented as chorded polygons. (Hamilton circuits). 

Section 2.2 reviews how the set of trivalent graphs can be systematically 

With few exceptions, such graphs are 

Polygonal graphs are relatively easy to compute, but they fail to show many 
0.2. /%./ 

of the symmetries of the figures. 

polygonal representations of the bi-pentagon. 

This is dramatized by the two isomorphic . 

PENTAGON a B'- 



Furthermore, a few graphs l ack  Hamil ton  c i r c u i t s ,  and thus  cannot be represented 

as chorded polygons. 2 .. ,,2.2> 

' I  

* 

2. /\3 
3. Map the  paths  of t he  chemical graphs on t h e  diagram, according t o  t h e  

canons d e t a i l e d  below. 

An example w i l l  be  introduced a t  t h i s  po in t  t o  he lp  i l l u m i n a t e  these  -3 . / +L? 

d e t a i l e d  r u l e s .  

To r e c a p i t u l a t e ,  t he  l i n e a r  p a t h s  and the  v e r t i c e s  connecting them a r e  z , / Y /  

first  i d e n t i f i e d .  

w i th  t h r e e  o r  more l i n k s  t o  the  rest of t he  ensemble. 

double o r  t r i p l e  bond is a s i n g l e  l i n k .  

between the  v e r t i c e s .  

tandemly l inked  atoms. For example, marking t h e  pa ths  of pyrene (a) g ives  t h e  

The v e r t i c e s  a r e  simply the  branch p o i n t s ,  i.e., t h e  atoms 

For these  purposes a 

The pa ths  are then t h e  i n t e r v a l s  

A pa th  may be a simple l i n k  o r  a l i n e a r  s t r i n g  of 

2, / 4-21 
diagram (b) 

W 
PYRENE 

which is r e a d i l y  recognized as isomorphic 

( d )  

t o  t h e  prism (c )  and i t s  formal 

.g2 ,/43 graph (d). 

r i t h m i c a l l y  by sys temat ic  permutation of t h e  inc idence  matrix of t he  graphs. 

The isomorphism of (b) with (c) could a l s o  be e s t ab l i shed  algo- 



( c )  represents the e s sent ia l  idea of topological mapping. I t  then remains 

t o  describe a syntax for describing such a f igure in a unique code i n  com- 

putable format. 

leaving the mapping of the paths t o  Part 111. 

Part I1 concerns itself  only with the possible  vertex groups, 
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THE TRIVALENT CYCLIC GRAPHS 

(The non-separable connections of n trivalent objects) 

Each link must terminate in 2 nodes; each node has 3 incident links. 

Hence there will be 3n/2 links and the order n must be even. The following 

development treats n from 0 to 12 in detail, but could be generalized 

indefinitely. The main objectives are to indicate 

(1) all the possible graphs 

(2) 

(3) symmetries within a graph 

(4) rational description of each item 

( 5 )  rational ordering of the graphs 

(6) 

(7)  compact, computable notation for each feature 

isomorphisms of superficially different graphs 

rational numbering of the vertices and paths 

Several computer programs have been applied together with substan- 

tial mama effort to meet these objectives. 

in the accompanying diagrams. 

The results are mainly summarized 

Any trivalent graph of a given order is found to represent either 

(1) a polyhedron of the same order (i.e. a planar graph 

nowhere separable by c 3 cuts),or 

a compound graph, the union of two planar graphs of 

lower order, obtained by cross-reuniting a pair of 

cut edges, one from each graph, and thus somewhere 

separable by 2 cuts, or 

a gauche or nonplanar graph, also called skew. 

(2) 

(3) 



Polyhedra, including t h e  degenerate forms with 0 vertices ( t h e  c i rc le  2 zd 

wi th  two v i r t u a l  f aces ,  no s o l i d  angles) and 2 v e r t i c e s  ("bicyclane", t h r e e  

v i r t u a l  f a c e s ) ,  are thus fundamental t o  t h e  gene ra l  development. For t h e i r  

formal computation w e  have r e l i e d  on t h e  con jec tu re  t h a t  every t r i v a l e n t  

polyhedron has a Hamilton c i r c u i t ,  i .e.,  a c i r c u i t  

of paths  t h a t  t r a v e r s e s  each v e r t e x  j u s t  once. On 

t h i s  b a s i s ,  any polyhedron can be  projected as an n- 

gon, with n/2 chords planted ac ross  a l l  t h e  v e r t i c e s .  

(Therefore,  graphs with a Hamilton c i r c u i t  may be  

c a l l e d  "polygonal". ) This conjecture  has been 

a t t r i b u t e d  t o  T a i t " ]  by Tutte"] , who has found 

[ 2 1  a counter  example which has ,  however, 46 vertices 

While no t a n g i b l e  examples a r e  known t o  have been 

missed, a sounder topological  theory of polyhedra could bebcth r eas su r ing  and 

more e l egan t  (see 2.5) .  

The t r i v a l e n t  polyhedra of from 0 t o  12 v e r t i c e s  have been c a l c u l a t e d  i n  
2.23/ 

t h i s  way, and va r ious  r ep resen ta t ions  of each of t hese  are shown (Fig.  2T.5). 

They.have a l s o  been checked f o r  n - e 12 by t h e  t r a d i t i o n a l  method of adding an 

e x t r a  edge i n  a l l  poss ib l e  ways t o  each of t h e  f a c e s  of t h e  polyhedra of o rde r  

n-2. 

The polyhedra w e r e  ex t r ac t ed  as a subset  of t h e  chorded polygons. That ~ . . i . 7 3 ' . ~ -  

is ,  a l l  permutations of n/2 chords ac ross  a n  n-gon w e r e  s y s t e m a t i c a l l y  con- 

s ide red .  This r ep resen ta t ion  has  t h e  advantage t h a t  i ts  elements remain 

i n v a r i a n t  under manipulations of t h e  polygon, e.g., r o t a t i o n  of t h e  v e r t i c e s .  

The program then demoted the  graphs t h a t  had doubly connected p a r t s ,  t h a t  is, 

1 t h a t  were unions of two graphs of lower order .  A l l  graphs were t e s t e d  f o r  

I isomorphisms by systematic  t r a c i n g  of t h e  a l t e r n a t e  pa ths  t o  f i n d  o t h e r  p o s s i b l y  

.k d i s t i n c t  Hamilton c i r c u i t s ,  i .e . ,  a l t e r n a t i v e  r e p r e s e n t a t i o n s  as chorded polygons. 

Comparisons are made on the b a s i s  of span l ists ,  i.e.,  c y c l i c  lists showing t h e  

*This is b e s t  accomplished by 2.90 
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. 
I *  

span of t he  chord from each vertex (c f .  2.30). 3- ,;( 3'3 * 
The canonica l  form of t h e  span list is t h e  lowest numerical  va lue  under 

the  permit ted opera t ions  of n-fold r o t a t i o n  and r e f l e c t i o n .  For t h e  most p a r t ,  

t he  symmetries could be prospec t ive ly  an t i c ipa t ed  t o  make the  program more 

e f f i c i e n t .  The graphs were sc ru t in i zed  f o r  p l a n a r i t y  (Kuratowski's c r i t e r i o n ,  

see 2.25). The planar graphs were then candida tes  f o r  manual cons t ruc t ion  of 

polyhedra. We conjec ture  t h a t  topologica l  symmetry can always be c a r r i e d  over  

i n t o  t h e  geometr ical  symmetry of t h e  cons t ruc t ion  of t he  polyhedron. The ass ign-  

ment of s o l i d  angles  is ,  of course,  a r b i t r a r y .  

* * * * *  

*2.2331 

I n  the  computations he re ,  t h e  program as i t  evolved included a p a r t i c u l a r  

i n t e r p r e t a t i o n  of t h e  span. This  i s  t h e  s h o r t e s t  i n t e r v a l  between t h e  nodes i n  

e i t h e r  sense;  when ambigui t ies  were discovered,  they were resolved by adding a 

l o w  order  b i t  (say 1 / 2 )  t o  t h e  value f o r  t h e  r e t rog rade  sense. 

prism t h e  span va lues  are: 

Hence f o r  t h e  



Compound Graphs. Unions of smaller graphs have been developed i n  two ways. 
Z j  

The program f o r  permuting chord l ists  on t h e  polygon produces a l l  t h e  compound 

graphs with Hamilton c i r c u i t s .  

The only cases relevant  t o  chemical graphs (i.e. with less than 38 vertices!) 

can be  composed by a b i l i n e a l  union of two c i r c u i t s ,  when a s i n g l e  c i r c u i t  is 

lacking. 

chemical i n t e r e s t ,  and must be  included i n  any gene ra l  c l a s s i f i c a t i o n  of graphs,  

as discussed i n  an appendix (2.72). 

However, many compound graphs are non-polygonal. 

The theory of non-Hamiltonian polyhedra has  some mathematical, i f  no 

Gauche Graphs. A gauche o r  non-planar graph is one which cannot be 2 sz2-c 

represented on t h e  plane (nor ,  t h e r e f o r e ,  by p r o j e c t i o n  as a polyhedron), 

without some edge crossing over another.  

graph must con ta in  e i t h e r  (a) o r  (b): 

Do such graphs play any r o l e  i n  chemistry? 

Kuratowski showed t h a t  any gauche 

2. a>-/ 

I n  f a c t ,  none of the 11,524 r i n g s  i n  t h e  Ring Index is gauche; consequently,  

1.2 3-2 except f o r  6CCC, t h e  gauche graphs have been d e l e t e d  from t h e  f i g u r e s  in t h i s  

r epor t .  

d i f f i c u l t i e s  and p o s s i b i l i t i e s  of formulating a gauche s t r u c t u r e .  Fig. 2.25a 

can be  passed over as a pentaspiro formation a l r eady  of unreasonable,  though 

perhaps not  una t t a inab le ,  complexity. 

The considerat ion of 6CCC as a polyhedral d e r i v a t i v e  w i l l  i l l u s t r a t e  t h e  

2 z3-- 0 

Figure 2 . 2 5 ~  shows 6CCC as an i n t e r n a l l y  chorded t e t r ahedron .  That is, 

a gauche graph must have an a d d i t i o n a l  path w i t h i n  an a l r e a d y  t i g h t l y  caged 

L 

u 

t 



s t r u c t u r e .  Figure 2.25d i l l u s t r a t e s  a p o s s i b l e  candidate  t o  f i l l  t h i s  hiatus i n  

topo log ica l  chemistry. 

The ob l iga to ry  nonplanari ty  of the gauche graphs should not  be confused 2 zJ--v' 
with t h e  o p t i o n a l  drawing of crossed paths i n  r e p r e s e n t a t i o n s  set o u t  as alter- 

n a t i v e s  t o  a planar  mesh (v. Part 1 I I ) ; a  gauche graph has  no planar  mesh. 

I n t e r p r e t i v e  Coding of Vertex Group Diagrams. .2 2 J-3- 

The chord l ist  of any polygon can be  abbreviated t o  g ive  an i n t e r p r e t i v e  

code: (1) letters of t h e  alphabet ,  A t o  Z ,  s tand f o r  spans from 1 t o  26, (2) a 

chord is mentioned only once, when e i t h e r  end is f i r s t  encountered, s i n c e  t h e  

span f i x e s  t h e  l o c a t i o n  of t h e  o t h e r  end. Thus t h e  prism, whose chord list is  

234234 becomes 6BCB, t h e  underscored f i g u r e s  r e f e r r i n g  t o  chords denoted by 

previous d i g i t s .  Actual ly  the las t  cha rac t e r  is redundant, being f i x e d  by its 

predecessors  i n  t h e  construct ion.  

has a Hamilton c i r c u i t ,  c an  be cons t ruc t ive ly  and compactly denoted with a 

code of only (n/2-1) c h a r a c t e r s .  

are t reacherous f o r  t h e  r ecogn i t ion  of canonical  forms and t h e r e f o r e  p l ay  no 

r o l e  i n  t h e  computation, being t r a n s l a t e d  a t  once i n t o  t h e  complete span list. 

These codes have a l s o  been shown on Figure 2T.5 f o r  i l l u s t r a t i o n  purposes. 

syntax w i l l  be  evident  from t h e  examples and from t h e  d i s s e c t i o n  of Figure 2T.20. 

Thus any polyhedron wihh n vertices,  i f  i t  

These codes, lacking invariance under r o t a t i o n ,  

The 

Ordering. The graphs are ordered by t h e  following r a t h e r  a r b i t r a r y  

There are however designed t o  f a c i l i t a t e  matching of codes with 

2 2 6 U  

p r i n c i p l e s .  

e s t a b l i s h e d  lists. 

Polygons. 2 . Z G /  1. The polygon is  o r i en ted  so as t o  minimize t h e  numbering 

of its span l is t  (cf. 2.2331). Within each series, t h e  order  is then given 

by the compact code generated from t h i s  number, v.s., 2.255. I f  t w o  o r  more 



polygons are isomorphisms, a l l  are shown; t h e  canonical  choice among them 

has minimal coding. 

A. Polyhedra a r e  displayed f i r s t .  

B. Then unions with polygonal r ep resen ta t ions .  2 -2 i- 2 

2. Non-polygons. The polygons are p r o j e c t i o n s  of Hamilton c i r c u i t s  on a 

circle.  When no s i n g l e  c i r c u i t  captures  a l l  t h e  nodes, t h e  graph may be  

d i s sec t ed  i n t o  two d i s j o i n t  c i r c u i t s  joined i n  a b i l i n e a l  union ( f o r  f u r t h e r  

mathematical c u r i o s i t i e s  see 2.72) .  The canonical  d i s s e c t i o n  creates a 

maximum couple of c i r c u i t s ,  t h e  l a r g e r  taken f i r s t .  

determined by i ts  

The value of a c i r c u i t  is 

order  (number of nodes) 

compact code: chord list (2.25 5) 

edge designated f o r  s p l i c i n g  i n  b i l i n e l l  union. 

C where C and C are t h e  component The coding follows t h e  form C1:nl,n2: 

c i r c u i t s ;  n1 and n The set of known examples f o r  2 

n=8, 10, 1 2 ,  as given i n  2T. 4 , w i l l  c l a r i f y  t h e  no ta t ion .  

1 2 

a r e  t h e  s p l i c e d  edges. 



. 
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Numbering of Vertices and Edges. Before defining the mapping of paths 2 .27c 

a 
b 

d 
e 
f 

C 

we must consider the numbering, i.e. ordering the sequence of vertices and paths. 

This issue is closely connected with canonical orientation of the diagram. 

natural linear order for the parts of a polyhedron is not always self-evident. 

The polygonal representation, whenever one exists, suggests one approach. 

must still select an orientation of the polygon, which may offer a choice among 

n-fold rotational and 2-fold reflectional permutations. 

we adopt the minimum span list (See 2 .2331) .  

and notations for the prism are: 

A 

We 

For the present treatment 
* 

Thus, some possible representations 

E C 

3 4 

1 6 

SPAN LIST - 234234 

CHORDLIST - 6BCB 

FACE INCIDENCE (DUAL GRAPH) - BDE ACDE BDE ABCE ABCD 

INCIDENCE MATRIX 

2 3 4 5 6  
1 1  111 

I: 1 
1 

1 1 5  1 1 4  

B C D E  
1 1 1 ( A  

1 1 c  l I B  

I ”  
FACE LIST, VERTICES - 123 2345 456 1346 1256 

FACE LIST, EDGES - abg bcdh dei efgi aefh 

INTERCHANGE GRAPH - bfgh acgh bdgi cchi dfhi b c d e f g  h i  
1 1 1 1  

abgi abef abde cdef 1 1 1  
1 1 1 

1 1 1  
1 1 1  

1 1 



2 - 32.7 1 Of t h e s e  v a r i o u s  r ep resen ta t ions ,  t he  E n  l is t  is b r i e f  and being i n v a r i a n t  

under r o t a t i o n ,  easy t o  permute. We t h e r e f o r e  denote each graph by i t s  span 

l i s t  i n  minimal form and l a b e l  t h e  v e r t i c e s  i n  t h e  corresponding sequence. Thus 

(234234) = (342342), of which (234234) is  minimal. Hence 

1 - 

I 27( 4'1( 
3 o3 - 4@ = 2Q2 

2 4  3 2  4 3  

. 

The numbers above are t h e  span, not t h e  v e r t e x  values .  

Vertex Labels 

z.3/ 

The v e r t i c e s  being numbered, t h e  path l ist  is  i n  t h e  o rde r  of t h e  v e r t e x  

couples,  t h e  polygonal c i r c u i t  being taken f i r s t ,  then t h e  chords. Thus t h e  

n i n e  edges of t h e  p r i s m  a r e ,  i n  o rde r ,  1 2 ,  23, 34, 45, 5 6 ,  61, then 13, 25 and 

46. Caution: t h e  p o l a r i t y  of each path fol lows t h i s  numbering. The same r u l e  

is appl ied t o  "self-looped edges," o r  "s l ings" ,  i.e. chords wi th  a span of 1. 

Examples : 

6 

4 

3 

6BCB 

6 

3 

6AAA 

.- 
2 .3 ,  

Edges 



(a) and (b) are r e a d i l y  reduced t o  t h e i r  canonical  form. (c) is  recognized 

as gauche (see t h e  graph 6CCC as t h e  l e f t  p a r t  of t h e  isomorphic (c')--  t he  

numbering of a Hamiltonian c i r c u i t  i s  displayed t o  h e l p  along) ,  and t h e r e f o r e  

d i s q u a l i f i e d .  I n  t h e  t a b l e s ,  ( a )  and (b) are a l r eady  known as  BCDDB and 

BCCCB r e spec t ive ly .  By canon 4 ,  t h e  choice i s  BCCCB. **- 42. 

The encoding follows t h e  p r i n c i p l e s  f o r  mapping o t h e r  pa ths  t o  be  d e t a i l e d  

i n  P a r t  111. However, t h e  s p e c i f i c a t i o n  of con t r ac t ed  edges ( s p i r o  fus ions )  is 

given a t  a sepa ra t e ,  f i r s t  l e v e l  of p r i o r i t y  , t o  b r ing  s t r u c t u r a l  homologues 

under a common heading. Where symmetries r e q u i r e  a choice,  t h e  s p i r o  fus ions  

w i l l  b e  mapped on t h e  edge list so as t o  maximize t h i s  vector .  I.e., they are 

placed as e a r l y  i n  t h e  list as possible.  The numbering of v e r t i c e s  and edges 

is r e t a i n e d  as given i n  2.3. That is, a v i r t u a l  node remains i n  t h e  list.  

The p resen t  example becomes 

i.e., t h e  s p i r o  fushion is mapped on t h e  3rd edge of t h e  c i r c u i t .  

a reasonable  one t o  mark t h e  vertex group f o r  t h e s e  f i g u r e s .  

are summarized i n  Table 2T.7. Applications t o  complete graphs are d e t a i l e d  i n  

P a r t  111. 

t o  exped i t e  t h e  t r a n s l a t i o n  of any vernacular  i npu t  codes. 

are n o t  p a r t i c u l a r l y  d i f f i c u l t  t o  program, b u t  as a l r eady  demonstrated can b e  

q u i t e  tedious by hand. 

The coding is  

Addit ional  examples 

The program contains  a s u f f i c i e n t  l i s t  of canonical  forms and synonyms 

These manipulations 



2.5-e 
Planar  Mesh Representations.  Besides t h e  i somet r ic  perspec t ive  and 

polygonal representa t ion ,  any polyhedron can be represented as a p lanar  mesh. 

Consider t h e  polyhedra pro jec ted  on a sphere.  Then choose any f a c e  f o r  a base 

and expand i t ,  f l a t t e n i n g  t h e  rest of t h e  sphere t o  an enclosed plane.  This  

opera t ion  shows t h a t  any polyhedron has a p lanar  r ep resen ta t ion  (no edges 

c ros s ing ) ;  furthermore,  any distinct f a c e  w i l l  g ive  a d i f f e r e n t  appearance 

when expanded. 

representa t ion .  

Usually t h e  l a r g e s t  f ace  w i l l  g ive  the  most nea r ly  conventional 

When t h e  mapping is expanded, t h i s  w i l l  u sua l ly  be more nea r ly  

reminiscent  of t h e  usual s t r u c t u r a l  formulas than t h e  more a b s t r a c t  f i g u r e s  so 

f a r  presented. 

The isomorphic v a r i a n t s  of p lanar  meshes obtained by choosing a l t e r n a t i v e  

f aces  as t h e  base ( see  Fig.  2.51) are genera l ly  very unfami l ia r ,  po in t ing  up t h e  

importance of a canonical representa t ion .  
2 . .i-/ 

ABC 
OR 

A IJ 

I O A 3  

BCOE 
OR 

FGHl 

I O A I A  

OEFG ABEFIJ 
OR 

ACOGHJ 

I O A 4 8  I O A 6  I O A 6  

WITH MAPPING OF 
BE NZOPERY LE NE 
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Reconstruction of planar mesh from Hamilton circuit representations. 

The polygonal representations of figure 2T.4 and 2 T . 5  are undoubtedly con- 

fusing owing to the intersection of chords belonging to different faces. A simple 

algorithm can help to resolve these figures; it is a lso  useful for the computer 

reconstruction of planar maps, closer to the chemist's customary models, from 

2 s3 the canonical codes. 

The main idea is to regard the polygonal form as projected on a sphere, 

the polygon forming the equator. Then, for a planar map, the chords must be 

classified into two sets, one for each hemisphere. Within either hemisphere, no 

chords intersect. The visualization of these structures still requires some 

practised imagination, especially to avoid the identificaiton of the Hamilton 

circuit polygon with any face of the polyhedron. However, as any face will be 

bounded by edges from the cirucit and from one hemisphere, the marking of feces 

is facilitated for chemist and computer alike. In practice the computer should 

carry all the burden of these transformations. 
2- J-/ 

The grouping of chords is quite simple. The assignment of N vs. S 

hemisphere is, of course, arbitrary; the first chord is assigned N. Then each 

succeeding chord is tested for intersection with the N set so far. If not, it 

is added to the N set. If it does intersect, it should be added to the S set. 

If it also intersects a chord already in the S set, the graph is non planar. Indeed 

this is the most effective algorithm for the purpose. 
-2, J-J- 

Planar meshes come directly fromthe chord groupings. The chords of one 

hemisphere are merely brought outside the polygon. Thus, for the pentagonal wedge, 



which takes only a topological deformation to yield 

When the map is a 2-connec-ed union an obiious ambiguity may arise, some chords 

intersecting with neither of the remaining sets. This does not impair the con- 

or 

could be 

0 I etc .  

The rule would be: place a chord in the S hemisphere (inside) if it is ambiguous. 

This ambiguity is probably the main source of disparity in conventional chemical 

symbolism; related to it is the choice of face to circumscribe the map. 



Nested parenthesis notation and combinatorial generator. 
,z ,s+ 

Since the  chords of one hemisphere do not i n t e r sec t ,  the  labels t h a t  s ignify 

t h e i r  start and end have t h e  properties of nested parentheses, t he  matching of lef t  

and r igh t  parentheses being implici t  i n  t h e  description. For the  two hemispheres 2- 56/ 

and superimposing the  parentheses and brackets we have a descriptive formula 

( [ ) ( I [ ) ]  
This i s  economical i n  the  computer program since it codes t h e  signs as 2-bit 

numbers, t he  formula becoming 

02103213. 

Such a formula can be t ranslated i n t o  a usable mesh diagram on s ight :  - 1 
r O - 2 - 1 - 0 - 3 - 2 - 1 -  

It i s  also the  basis of a ra ther  more e f f ic ien t  generator program than the  one 

mentioned i n  2.232. Besides t h e  economy of compact representation of t h e  codes 

as quaternary numbers, it is easy to  r e s t r i c t  t he  generator t o  minimize f r u i t l e s s  

e f f o r t s  w i t h  meaningless codes (e.g., extra r igh t  parentheses) and redundant forms 

(interconversion of ( ) and [ 1 ; some rotat ional  symmetries). The notation is  

already exp l i c i t l y  l imited t o  Hamiltonian planar maps. For cer ta in  investigations,  

addi t ional  r e s t r i c t i o n s  l i k e  absence of t r i ang le s ,  cycl ic  connectedness a t  a leve l  

of at  least 3 (i .e. polyhedra), 4, or 5 ,  and other features  can be ra ther  eas i ly  

v 

added. 

of 2.23 2 is  s t i l l  the  most e f f i c i en t .  

However, t he  output is replete  with isomorphisms, fo r  which t h e  technique 



Fur ther  Developments i n  the  Theory of T r iva l en t  Graphs. 

L ,4  .c; 
Polyhedra. Since the above material w a s  composed and most of t h e  computations 

run,  some a d d i t i o n a l  cont r ibu t ions  i n  t h e  l i t e ra ture  have come t o  l i g h t .  
I- 

It w a s  espec ia l ly  s u r p r i s i n g  t h a t  t h e  enumeration of t he  polyhedra had 

n o t  been worked out  already i n  Euler ' s  t i m e  o r  ear l ie r ,  i n  view of c l a s s i c a l  

i n s i g h t  i n t o  t h e  f i v e  r egu la r  polyhedra (of which th ree ,  t he  te t rahedron ,  t h e  

20 cube and t h e  dodecahedron are included i n  our t r i v a l e n t  graphs,  n4,  n8, and n 

r e spec t ive ly .  I n  1900, however, Brcckner constructed t h e  t r i v a l e n t  polyhedra 

f o r  n up t o  1 6 ,  and we could confirm t h e  equivalence of h i s  se t  wi th  t h e  r e s u l t s  

w 

of our computer programs through n = 1 2 .  

L i t t l e  add i t iona l  work has  been done on t h i s  problem, except by Brxckner. 

However (and independently of t h e  present  s tud ies ! )  Grace has  j u s t  published a ;? L. *L 

d i s s e r t a t i o n  on t h e  computation of t h e  polyhedra through n =I8 (Grace, 1965). This 

work f aces  formidable problems i n  t e s t i n g  f o r  isomorphism (18! = 10 ) - w i s e  
15 

permutat ional  searches being p roh ib i t i ve .  Mathematical theory ev iden t ly  s t i l l  

lacks  an  a n a l y t i c a l  approach t o  t h i s  problem. Grace then used a c o n j e c t u r a l  

c r i t e r i o n  of isomorphism, "equisurroundedness". According t o  Grace "Equisurrounded- 

ness  is a necessary but no t  a s u f f i c i e n t  condi t ion  f o r  isomorphism. The necess i ty  

is obvious...." H e  gives a counter-example wi th  1 7  f aces  t o  show t h e  in su f f i c i ency .  

It i s  the re fo re  uncertain whether he may have r e t a ined  an incomplete l i s t  of 

polyhedra, as i t  is unknown whether some smaller polyhedra than wi th  17 f aces  

may be equisurrounded with,  b u t  no t  isomorphic t o ,  members of t h e  l i s t  t h a t  has  

been r e t a ined .  Grace did f ind  some forms t h a t  Br*dckner had overlooked. 

The polyhedra through n = 18 have been v e r i f i e d  t o  have Hamilton c i r c u i t s ,  

.-7 0-3 
I 

including the  c l a s s e s  n n and n as l i s t e d  by Grace. It  should be remarked 

t h a t  t h e  t es t  f o r  isomorphism (see 2.232) of polygonal graphs i s  r e l a t i v e l y  e f f i c i e n t ,  

s i n c e  << 2" opera t ions  (contra  n!) can e s t a b l i s h  (a )  whether a graph has  a Hamilton 

c i r c u i t  and (b) i f  so ,  e s t ab l i sh  a canonical  form f o r  comparison wi th  o the r  graphs.  

14' 16' 18 



This test  could be appl ied t o  Grace's f o r  generat ing polyhedra program t o  discover  

any polyhedra smaller than n46(Tutte 's  example) t h a t  might l a c k  a Hamilton c i r c u i t ,  

( s ee  2.230) and a more r igorous c r i t e r i o n  of isomorphism than equisurroundedness 

can fu rn i sh .  

The t a s k  of s c r u t i n i z i n g  polyhedra f o r  Hamilton c i r c u i t s  is  s i m p l i f i e d  

considerably by t h e  r e d u c i b i l i t y  of a t r i a n g u l a r  face.  

Hamilton c i r c u i t  a t  i ts  f i r s t  incidence on a t r i a n g l e :  

Consider a trace of a 
Pz, bf 

P l a i n l y  i f  a l l  3 of its nodes are t o  b e  v i s i t e d ,  i t  must be  a t  t h i s  occasion. A 

path -1-2 without 3 would l eave  3 s t randed,  i.e., would make a Hamilton c i r c u i t  

impossible.  The complex -123- i s  the re fo re  tantamount t o  a s i n g l e  node. 

/@\ 

G@-. \ 
I T  

ORDER = N 

* 

ORDER = ( N - 2 )  



Thus, i f  t h e  (n) graph has a t r i a n g u l a r  f ace ,  and a Hamilton c i r c u i t ,  some (11-21 

graph w i l l  l ikewise  have a Hamilton c i r c u i t .  Without formal proof ,  we assert 

+ t h a t  i f  (n) is a polyhedron, so is (n-2). ,z , ct. -3 
By induct ion  w e  may then pass over (n)-p]yh+ra t h a t  have any t r i a n g u l a r  

f ace ,  provided we have sc ru t in i zed  a l l  t h e  (n-2) cases ,  which can be handled i n  

p a r t  by the  same process. As shown by t h e  following t a b l e ,  t h i s  argument reduces 

t h e  work f o r  t he  polyhedraup t o  18  v e r t i c e s  from 1555 down t o  only 55 cases .  

N 

4 

6 

8 

10 

1 2  

14 

16 

18 

To ta l  n 5 18 

Non-triangle-containing 
T o t a l  Polyhedra Polyhedra 

1 0 

1 0 

2 1 

5 1 

1 4  2 

50 5 

233 1 2  

1249 34 

- 
1555 

- 
55 



I 

I "  

The l i s t i n g s  of t a b l e s  2T.2 a n t i c i p a t e  the polygonal graphs through 

12 vertices,  t h a t  i s  8 f a c e s ,  ( o r  7 r ings w i t h i n  the  meaning of t h e  Ring Index). 

From Grace's work w e  can r e a d i l y  enlarge t h i s  a n t i c i p a t i o n  t o  18 vertices,  (11 

f a c e s  or 10 r ings )  b u t  have no t  made the ex tens ive  enumerations c a l l e d  f o r .  2.6 /7 

The count of unions and p a r t i c u l a r l y  of gauche graphs i n c r e a s e s  even more 

r a p i d l y  than  t h a t  of t h e  polyhedra. On the  o t h e r  hand, t he  n o t a t i o n a l  system 

w i l l  accommodate any polyhedron t h a t  has a Hamilton c i r c u i t ,  as w e l l  a s  unions 

of such polyhedra; such s t r u c t u r e s  can b e  coded as they a r e  de f ined  without  

being a n t i c i p a t e d  i n  advance. The generator  would then be confined t o  an 

empi r i ca l  l i s t  of previously discovered forms. This may be  a p r a c t i c a l  

n e c e s s i t y  f o r  t h e  h ighes t  o rde r  forms i n  any case, where t h e  r a p i d l y  inc reas ing  

number of p o s s i b l e  arrangements c o n t r a s t s  with r e l a t i v e l y  few r e a l i z a t i o n s .  

The most complex r i n g s ,  i n  p r a c t i c e ,  a r e  r e l a t e d  t o  polyhexacyclic .I I c- ,! 

hydrocarbons. This s p e c i a l  class can b e  accommodated by another approach, 

e l abora t ed  i n  P a r t  6. This involves t h e  mapping of t he  polyhexacycle on a 

s e l e c t i o n  of " t i les"  from a continuous hexagonal t e s s e l l a t i o n  o r  mosaic. 

enumeration of t h e s e  forms is  a l s o  given i n  P a r t  6 .  

An 



Symmetry class if ica tion. 

The symmetry of the vertex group plays a central role both in mapping 2 7 c  

known structures and in the generation of non-redundant lists of hypothetical 

structures. The essential problem is that the same topological relationship 

may have many alternative representations, which is to say that the diagram can 

be manipulated so that it is self-congruent. 

different sets of vertices will describe the same figure. E.R., 

If the vertices are labelled, 

C 1 h 4 3 

Since we are dealing with topological groups, not rigid bodies, the symmetries 

carry even further, i.e. the tetrahedral cases are not distinguished (stereo- 

isomerism being dealt with at another level). 



6 .  7c?/ 
The polyhedral representations generally make the set of symmetries 

self-evident (which the planar ones sometimes do not). For example, the prism 

has 12 equivalents 

-+- 
3 rotations 

I 
I 
I 

I 
I 
I 2 reflections 

- r o o -  2 r o t a t i o n s  
-- 

while its Hamiltonian polygon displays only 4 .  

Although not a profound task, the manual enumeration of the symmetries, say 

for table 2T.2, would be a tedious one and an algorithmic approach would be 

2 7c&c preferred. 

One approach is to generate the whole symmetric group, Sn, the n! 

permutations of the vertex codes, and test each of these for congruence with 

the canonical form. But this is almost prohibitively costly for n - 10, as lo! = 

3,628,800 trials, or probably about one minute of computer time per set. 
2 7 0 3  Instead we can rely upon the set of Hamiltonian circuits, where they 

exist. Each symmetry operation will generate a corresponding representation of 

a Hamilton circuit. 

set of Hamilton circuits. These can be generated by a binary search of << 2 

trials, far less than the n! of the whole symmetric group. In fact this list 

Consequently the set of symmetries will be included in the 
n 

of Hamilton circuits was saved from the initial computation of table 2T.2 for 

use as the input data of this calculation. 



L . 7 /  The algorithm can be summarized 

1. Take E as t h e  canonical form from t a b l e  2 ~ . 2 .  Convert t h e  chord l i s t  t o  an 

incidence matr ix  (connection t a b l e )  of t h e  n v e r t i c e s  with one another .  

2. T e s t  E f o r  i t s  s y m m e t r y  on the  plane. 

of r o t a t i o n  of i t s  indices  [ t h e  permutation cyc le  ( 123*.*n)] 234...1 be fo re  and a f t e r  

ref lect  ion,  

E ,  a symmetry operator  is revealed. 

That is ,  tes t  E under l (1 )n -1  s t e p s  

1. When the  permuted incidence matr ix  becomes congruent with 123. .n 
(n.. 321 

This set of ope ra to r s  is saved. 

3. Each Hamilton c i r c u i t  is t e s t e d  f o r  p o t e n t i a l  congruence with E under 

r o t a t i o n  and r e f l e c t i o n .  The isomorphisms ( ind ica t ed  i n  t a b l e  2 T . 2 )  cannot be 

made congruent t o  E and are r e j e c t e d .  The congruences are saved as equ iva len t s  

under symmetry. 

4. Each of t hese  is  also subjected t o  t h e  ope ra to r s  found i n  s t e p  2. 

5. The l ist  is so r t ed  and redundancies are removed. This can a l s o  be done 

p r i o r  t o  4 i f  the l i s t  is a long one. 

6. 

Further  c l a s s i f i c a t i o n s  can b e  made, as ind ica t ed ,  on t h i s  l ist .  For many 

The l i s t  now contains  a l l  of t h e  symmetries expressed as permutations. 
.;. ;/,,,,/ 

purposes 

Examp le .  

a. 

b. 

(1) 

i t  can be used as is. 
2 (C) 

3 (B)J3 (B) 

Consider t he  p r i s m ,  BCB 

This  is  r e a d i l y  t r a n s l a t e d  i n t o  

-- 
123456 p lus  13,25 and 46. 

5 

E i s  of course 123456. 

are r e a d i l y  found and g ive  

The symmetries of r o t a t i o n  (C,) and r e f l e c t i o n  

123456 456123 654321 321654. 2 



7.  

t he  search w a s  i n i t i a l i z e d  a t  v e r t e x  1 and considered only t h e  paths  12 and 13 
Our program gives  the  following add i t iona l  Hamilton c i r c u i t s .  For e f f i c i e n c y ,  

as candidates  f o r  t h e  f i r s t  t r i a l  choice.  That is ,  t h e  r o t a t i o n  and r e f l e c t i o n  

opera t ions  were an t i c ipa t ed .  Hence t h e  c i r c u i t s  a s  found are p o t e n t i a l l y ,  not 

a c t u a l l y ,  congruent wi th  E. A t  t h i s  po in t  they are 

125643 134652 132546. 

The f i r s t  two r equ i r e  a r o t a t i o n ;  t h e  l a s t  i s  a l ready  congruent. When r e c t i f i e d  

w e  then have 312564 
I -  -2 //>’ 

312564 213465 132546 3 0; Q2 5 

4 

8. These are used as operands under t h e  opera tors  found i n  2. Together wi th  E 

w e  then  have 

E 456123 654321 321654 
312564 564312 465213 213465 
213465 465213 564312 312564 
132546 546132 645231 231645 

9 .  A f t e r  s o r t i n g  and weeding out  w e  have t h e  1 2  cases. 

123456 213465 312564 456123 546132 645231 

321654 465213 564312 654321 132546 321645 

For s m a l l  n of course w e  can more r ead i ly  opera te  on a v i s u a l  image of t h e  prism 

a t  speeds t h a t  compare with t h e  computer. But recording t h e  r e s u l t s  becomes a 

b o t t l e n e c k  i n  more ex tens ive  work. 



General Svstematics of Graphs. Composition of graphs from Hamilton 

C i r c u i t s :  2-connected graphs. 
A 7, 7 2  

A more gene ra l  approach t o  t h e  d e s c r i p t i o n  of c i r c u i t - f r e e  graphs has  

been devised based on the l e v e l  of connectedness of t h e  graph, i .e. ,  t h e  

least number of c u t s  needed t o  sepa ra t e  t h e  graph. 

The cases  of chemical i n t e r e s t  are a l l  2-connected, and have a l r eady  been 

2.73 discussed i n  s e c t i o n  2.262. 

Canons of Analysis. A 2-connected graph found t o  be  c i r c u i t q r e e  i s  

subjected t o  t r i a l  d i s s e c t i o n s  of i t s  b i l i n e a l  unions,  designed t o  show a con- 

s t r u c t i o n  under t h e  following criteria. 

o b t a i n  a d i s s e c t i o n  of t he  graph i n t o  

1. A minimum number of c i r c u i t s  

2. A t  t h e  lowest level of connectedness. 

The p r i n c i p l e  of a n a l y s i s  i s  t o  

In  e f f e c t ,  t h e  d i s s e c t i o n  maps t h e  c i r c u i t s  of t h e  graph on t o  t h e  nodes of 

a "hypergraph." 

a s i n g l e  node. Otherwise i t  may b e  a node-pair (i.e. a pa i rwi se  union of 

c i r c u i t s )  or i n  p r i n c i p l e  a more complex tree or even a gene ra l i zed  connected 

graph. 

l a i d  out f o r  chemical graphs -- t h e  nodes being t h e  c i r c u i t s ;  t h e  edRes being 

the  sets of c i r c u i t - j o i n i n g  edges. We can t h e r e f o r e  add t h e  c r i t e r i o n :  

I f  a Hamilton c i r c u i t  is p resen t  t h i s  hypergraph c o n s i s t s  of 

The hypergraph is then evaluated according t o  t h e  same p r i n c i p l e s  a8 

3. 

The eva lua t ion  of t h e  hypergraph may e n t a i l  s ea rch ing  its set  of Circui t s ,  

Giving t h e  maximum valued hypergraph. 

as may be done r ecu r s ive ly  t o  any depth. 



' .  

This a n a l y s i s  l eads  t o  some p r e d i c t i v e l y  u s e f u l  p r i n c i p l e s  concerning 

t h e  occurrence of non-Hamilton graphs. 

analyzed f o r  t h e  presence of t h r e e  kinds of edges (1) t h e  most u sua l  edges 

p a r t i c i p a t e  i n  some bu t  no t  every c i r c u i t  (2) "must-edges" p a r t i c i p a t e  i n  

A given c i r c u i t a b l e  graph is r e a d i l y  

2.7y 

every c i r c u i t ,  o r  (3) %on-edges" p a r t i c i p a t e  i n  no c i r c u i t .  

A b i l i n e a l  union i n  which a non-edne of e i t h e r  o r  both component graphs 

is s p l i c e d  then forms an HC-free graph. 
2.73 

The same approach can be used fo r  3-connected graphs.  I n  t h i s  case, a 3-cut 

r e s i d u e  is obtained by e x t r a c t i n g  one node from a graph. I f  one of t h e  c u t  

edges is a must-edge, it w i l l  r e t a i n  t h i s  property i n  its compositions. 

i n  T u t t e ' s  example, r ep lac ing  3 nodes of a te t rahedron by a 15-node r e s i d u e  with 

Thus, 

a must-edge r e s u l t s  i n  a 46-node c i r c u i t - f r e e  graph. (Fig. 2.23 ). 
2, 74 

There is no p resen t  compulsion to  r i g i d i f y  t h e  n o t a t i o n  f o r  such 

complex graphs; one suggestion is i m p l i c i t  i n  t h e  diagram: 

(38CGD,IGDIDGE*CD : 231 : C*D TGDFD) 



This 38-node graph is t h e  same as 2.78d; t h e  polygons are o r i en ted  i n  

canonical  form. 

3-cut graphs; t h e  231 s p e c i f i e s  t h e  s p l i c i n g  of t h e  c u t  edges. 

t h e  subgraphs t o  t h e  r i g h t  and l e f t  of t h e  dashed l i n e s  are t h e  same. 

The cons t ruc t ion  shown fol lows t h e  r u l e  of d i s s e c t i o n  i n t o  maximum 3-connected 

c i r c u i t s .  

The *'s s i g n i f y  t h e  ex t r ac t ed  no te s  whose removal l eaves  t h e  

Note t h a t  

a. 78 
This graph which is t h e  same as 2.78d is almost c e r t a i n l y  t h e  

smallest non-Hamiltonian polyhedron; i t  is known t o  b e  t h e  smallest which 

is c y c l i c a l l y  3-connected. A l l  candidate  graphs n 24 have been 

e x p l i c i t l y  examined. 

edge (marked by arrow in 2.78a). 

shown, i n  2 . 7 8 ~  and 2.78d i n  conf igu ra t ions  i n c o n s i s t e n t  w i th  must-edges i n  t h e s e  

f i g u r e s .  

l i n e s  on 2.78d correspond t o  those  on 2.77. 

Its cons t ruc t ion  may be c l a r i f i e d  by not ing t h e  must- 

A r e s i d u a l  3-cut graph can be  planted,  as 

2 . 7 8 ~  is Tut t e ' s  46-node graph, a l r eady  f igu red  a t  2.23. The dashed 



Coding and Reconstruction of Hamilton C i r c u i t s  -? y 0 c. 

Each graph i s  represented  as a Hamilton c i r c u i t  p ro j ec t ed  on t h e  boundary 

of a r egu la r  polygon with “ v e r t i c e s .  

s i n c e  each ve r t ex  i s  t r i v a l e n t .  

n * 
- c h a r a c t e r s ,  i n t e g e r s  being replaced by t h e  alphabet  t o  obvia te  punctuat ion . 2 

Jo in ing  these ; v e r t i c e s  a r e  - n chords,  2 

The l o c a t i o n s  of these chords are s p e c i f i e d  by 

To r econs t ruc t  t h e  graph: 

1) D r a w  t h e  n-gon 

2) S t a r t  at an a r b i t r a r y  node and draw a chord whose span corresponds t o  

t h e  first cha rac t e r  

3) For each success ive  cha rac t e r ,  move t o  t h e  next  unoccupied node. 

Hence, t h e  s t e p s  for  6BCB are: 

6 6B 

occupied 

6BC 6BCB 

* A  1 F 6  K 11 P 16 u 21 
B 2  G 7  L 12 Q 17 v 22 

c 3  ~a M 13 R 18 W 23 

D 4  I 9  N 14 s 19 X 24 

E 5  J 10 0 15 T 20 Y 25 



Appendix: 

Algori thi i  f o r  f ind ing  Hani l ton c i r c u i t s  of  a c y c l i c  graph. 
2.90 

This  i s  i l l u s t r a t e d  f o r  en undi rec ted ,  t r i h e d r a l  graph b u t  snould be 

genera l ized  without  d i f f i c u l t y  i n  an obvious way. 

of t h e  connec t iv i ty  of t h e  gra?h. 

a t a b l e  of s e t s  of  edges so  t h a t  j u s t  two edges inc iden t  GZ each node appear  

i n  any row of  t h e  t a b l e .  

i nc iden t  edges a r e  marked cu r ren t  and open. Tine circui t - f ragment  t c b l e  

is  s t a r t e d  with t h r e e  rows by 1 i s t i r . g  t h e  3 pai rwise  choices  among t h e  

cu r ren t  edges. 

The i n p u t  i s  a d e s c r i p t i o n  

T?ie esserice of t h e  r o u t i n e  is  t o  b u i l d  

The f irst  node i s  chosen a r b i t x F i l y .  IGS t h r e e  

1. S e l e c t  an open edge. 

edges. 

Tne two ad jacent  edges become t h e  t r ia l  

2. How many trial edges match t h e  cu r ren t  l i s t :  none, one,  o r  two? 

a. 

b. 

If none match, c l o s e  t h e  s e l e c t e d  edge and r e p l a c e  

it on t h e  cu r ren t  open l i s t  by t h e  two t r ia l  edges. 

Scan t h e  circui t - f ragment  t a b l e .  Each row i n  which 

t h e  s e l e c t e d  edge appears  i s  rep laced  by t w o  rows, one 

for  each trial edge. 

by one row showing both t r i a l  edges. 

If one matches, a c i r c u i t  o f  t h e  graph has  been c losed .  

Scan t h e  c i r cu i t - f r agnen t  ( c  . f .  ) t a b l e  c o n t r a s t i n g  t h e  

matched edge wi th  t h e  s e l e c t e d  edge. Each c . f .  where 

ne i the r  appears i s  de le t ed .  

on a c . f . ,  t h i s  i s  augmented by t h e  trial edge. 

appear, t h e  c . f .  r O W  s t ands  as i s  u n l e s s  a t r a c i n g  of 

t h e  c . f .  shows it t o  be  prematurely c losed  w h e r e u p x  it 

i s  deleted.  Go t o  1. 

Each remaining row is  rep laced  

Go t o  1. 

If one of t h e  two appears  

If both 



C .  I f  both m t c h  two ad;L=csnt f aces  of t h e  graph have been 

closed.  The ?receding subrGutine i s  r ev i sed  i n  an 

obvious way t o  close o;;t both matched edges: t h o s e  c. f .  

rows zre r e t a ined  whici; =e cocpa t ib l e  with t h e  i n d i c a t e d  

edge a l l o c a t i o n s .  Go to 1. 

The process  is terminated vken t h e  ope2 edge l i s t  i s  vacated.  If 2 

t h i s  leaves  some nodes unused,no H a i l t o n  c i r c u i t  i s  poss ib le .  

t h e  f i n a l  c losu re  of  circuit-fragriients l eaves  a tsble of c i r c u i t s .  This  

mast s t i l l  be scanned t o  sepa ra t e  t'ne Hani l tonian c i r c u i t s  from t h e  set 

of pa i rwise  d i s j o i n t  c i r c u i t s .  

Otherwise,  

The e f f i c i e n c y  of  t h e  algori thm depends on keeping t h e  c u r r e n t  c .  f. 

t a b l e  as small as poss ib le .  

which scans prospec t ive  choices  of c w r e n t  edges t o  seek t h e  prornp,est 

c losu re  of  a fzce .  

This  i s  accoDplished by a lookahead r o u t i n e  

For an example, Tutte's 46 node non-Emil tonian graph has  been searched 

exhaust ively.  This requi red  a c. f .  t a b l e  of 12,477 rows consuming 29 

seconds of a program on IBM 7090. 

o t h e r  l a r g e  Hamiltonian graphs reqxi red  a coziparable e f f o r t .  

Searches y i e l d i n g  z 1 1 t h e  c i r c u i t s  of  

This  procedure may have some u t i l i t y  f o r  s t u d i e s  on c l a s s i f i c a t i o n ,  

isomorphisns,and symnetries of a b s t r a c t  g rap t s  a d  o t h e r  network problems 

f o r  which t h e  s e t  of  Hamilton c i r c u i t s  i s  o f t e n  an advantageous a?proach. 

A coap le t e  d e s c r i p t i o n  of t h e  c o n p t e r  program i s  a v a i l a b l e  fros; t h e  au thor .  



1. 

2. 

3. 

4. 
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2T.2 SYMBOLIC LISTING OF CYCLIC TRIVALENT GRAPHS. 

Polygonal Forms: [Planar  (polyhedral,  unions) , Nonplanar] 

2T. 20 

2T.21 

2T. 22 

2T. 23 

2T. 24 

Nonpolygonal Forms: 

2T. 25 

n = 4, 6,  8 

n = 10 

n = 12 

n = 12 Nonplanar forms 

n = 14 Polyhedra only (with Grace [1965] 

Planar  polyhedra and unions 

c a t a l o g  number) 

n = 8,  10, 12 Sununary t a b l e , ( s e e  2T.4). 

The canonical form i s  shown f i r s t  on each l i n e .  Isomorphs (un re l a t ed  by 
r o t a t i o n  o r  r e f l e c t i o n )  a r e  then shown. See 2T.254 for coding. 



2T. 20 

POLYGONAL GRAPHS 

4 VERTICES 
POLYHEDRON 

4 A  BB 

PLANAR UNION 

48 A A  

6 VERTICES 
POLYHEDRON 

6 A  

PLANAR UNIONS 

68  
6 C  
60 

GAUCHE GRAPH 

6 X  

BCB 

A A A  
ABB 
A C A  

ccc 

8 V F R T I C E S  
POLYHEDRA 

8A 
8 8  

PLANAR UNIONS 

8C 
8 0  
8E  
8F 
8G 
8H 
8 1  
8J  
8 K  
8L 

GAUCHE GRAPHS 

BCCB BDDB 
CECC 

A A A A  
AABB 
A A C A  
ABCB 
ABDA 
ACDB 
ADDA 
AEBB 
AECA 
BBBB 

ACCC 
BDCC 
CDOC DDOD 



POLYHEDRA 
BCCCR BEFDB 
BCDDB BCEFC 
BDEBB 
BDECC 
CFDEC 

PLANAR UNIONS 
A A A A A  
AAABB 
A A A C A  
AABCB 
AABDA 
AACDB 
AADDA 
AAEAA 
AAEBB 
AAECA 
ABBBB 
ABBCA 
ABCCB 
ABCDA 
ABDDB ABEBC 
ABEAB 
ABEDA 
A B F 0 0  

GAUCHE GRAPHS 
AACCC 
ABDCC 
ACCEA 
ACDDC ADDDD ADDEC 
ACDEB AOEFB 
ACEEA AEEEA 
ADECD 
ADFCC 
ACCCC 
BBCCC 
BCDCC BEFCC 
BDCDR BEEEB 
BDDDC BEDCD BEDEC 
BDDEB 
CCECC 
CDEDC DFDED 
CEEDD CFDDD CGDCO DEEED 
CEEEC CGCCC EEEEE 

10 VERTEX GRAPHS 

ABFCA 
ACACA 
ACECC AECEC 
ACFCB ADFDB 
ACFDA 
AOADA 
ADBEA 
AEBEB 
AFCEB 
AFDEA 
AFFBB 
AGBCB 
ACCDB 
AGDC 9 
ACEBB 
AGECA 
BBBCB 
BBCDB 
BBEBB 

2T.21 



1 2  V E R T E X  GRAPHS- 
POLYHEDRA 

BCCCCB 
BCCDDB 
BCOEBB 
BCDECC 
BCDFCB 
BCFBEB 
BCFFBC 
BDECOB 
BDFCEB 
BOFDEC 
BDGDEB 
BFBFBB 
CGECEC 
CHFCFD 

AAAAAA 
AAAABB 
AAAACA 
AAABCB 
AAABDA 
AAACDB 
AAAODA 
AAAEAA 
AAAEBB 
AAAECA 
AABBBB 
AABBCA 
AABCCB 
AABCQA 
AABDDB 
AABEAB 
AABEDA 
AABFAA 
AABFBB 
AABFCA 
AACACA 
AACECC 
AACFBA 
AACFCB 
AACFOA 
AADADA 
AADBEA 
AADFAA 
AAEBEB 
AAEFAB 
AAEFBC 
AAEFDA 
AAFFAA 
AAFFBB 
AAFFCA 
AAGABB 
AAGACA 
AAGBCB 
AAGBOA 
AACCOB 
AACDOA 
AAGEAA 
AAGEBB 
AAGECA 
ABBABB 
ABBACA 

PLANAR U N I  

BFHFDB 
BCCEBC 
BCEBDB 
BCFCEC 
BCGOBD 
BOFBDB 
BCGCEB 
BECEBC 
BDCEBO 
BECECO 

c I cccc 
C I F C F C  

ONS 

AABEBC 

AAECEC 

AADFDB 

BCEFOB 
BEBEDB 
BEHECC 

BDHOOB 
BFBF CC 

BFCFOC 

OHFDFO 

ABBBCB 
ABBBOA 
AB8CD8 
ABBOAB 
ABBDOA 
ABBEBB 
ABBECA 
ABCBCA 
ABCCCB 
ABCCOA 
ABCDOB 
ABCEAB 
ABCEDA 
ABCFBB 
ABCFCA 
ABDACA 
ABDEBB 
ABDECC 
ABDFBA 
ABDFCB 
ABDF DA 
ABEADA 
ABEBEA 
ABEEAB 
ABEFAA 
ABEFDB 
ABFADB 
ABFBEB 
ABFFAB 
ABFFBC 
ABFFDA 
ABGBBB 
ABCCAB 
ABCOEA 
ABGF88 
ABGF CA 
ABHBCB 
ABHBDA 
ABHCAA 
ABHCOB 
ABHOAB 
ABHDOA 
ABHEBB 
ABHECA 
ACAACA 
ACACOB 

ABBDBC 

ABCEBC 

ABFCEC 

ABGOBO 
ABCDAC 

ABGBCC 

ABCBEA 
ABCCEB 

ABHDBC 

ACADBC 

ACADOA 
ACAEBB 
ACAECA 
ACEBDA 
ACECEA 
ACFBDB 
ACFCEB 

ACFOEC 
ACGBBC 
ACCBDA 
ACCCEA 
ACGDEB 
ACGEAC 
ACH6BB 
ACHBCA 
ACHCCB 
ACHCDA 
ACHOAA 
ACHDOB 
ACHEBC 
ACHEDA 
ACHFBB 
ACHFCA 
ADAODB 
ADAEDA 
ADAFBB 
ADBGBB 
ADGAOA 
AOCECD 
ADMABB 
ADHEBB 
AOHECC 
ADttFDA 
AEAFCB 
AEBCCB 
AEGAEA 
AFAFAA 
AFAFDB 
AGBGBC 
AGECEA 
AHBDEB 
AHBEEA 
AHBCBB 
AHtCCB 

ACCEBD 
AECCDB 
AGEBFC 
ACECFD 
ADBEDB 
ADBFDA 
ACGEEA 
AGOGEB 
AECGEA 

AHFDBE 
AHFDFA 

AHFCFB 
AOHFCB 

AHECFC 

ACDBFB 

AHEBFB 

AHOCDB 
AHEAEB 
AHECOA 
AHFAEA 
AHFCBB 
AHHBCB 
AHHCOB 
AHHDOA 
AHHEBB 
AI8868 
A I B B C A  
A I BCCB 
AfBDOB 
AfBEDA 
A I B F B B  
A l 8 F C A  
AICACA 
AICECC 
A I C F C B  
A 1 OAOA 
AIOBEA 
A I O F A A  
A I E B E B  
A I E f B C  
A I E F O A  
A I FFBB 
A I F F C A  
A I C B C B  
AIGCOB 
AICOOA 
AXCEBB 
A I C E C A  
888888 
BBBCCB 
B86009 
BBBFBB 
BBCECC 
BBCFC6 
BBEBEB 
BBEFBC 
BBFFBB 
8BWCB 
BBGCDB 
BBCEBB 
BCBBCB 
BCBCDB 
BCHCDB 

2T. 22 

AHECBC 

AI BEBC 

A I E C E C  
A I O F O B  

BBB€BC 

r m c f c  
BBOFOB 

BCHDBC 



12 VERTEX CALICHE GRAPHS 
2T.23 

A A A C C C  
AABDCC 
AACCEA 
AACDDC 
AACDER 
A A C I  EA 
AADECD 
AADFCC 
A A G C C C  
ARRCCC 
ABCDCC 
ABDCDR 
ABDCEA 
ABDDDC 
ABDDEB 
ABDEEA 
AREECD 
ABEEER 
ABEFCC 
ABFACC 
ABHCCC 
ACACCC 
ACCDDA 
ACCECC 
ACCEDR 
ACCFDA 
ACCGBB 
ACCGCA 
ACDDEA 
ACDEDC 
ACDEEB 
ACDFCC 

ACDF EA 
ACDGCB 
ACDGDA 
ACEEEC 
ACEFCD 
ACEFEB 
ACEGAA 
ACECCC 
ACEGDB 
ACFFAC 
ACFFBD 
ACFFEA 
ACFGDA 
ACGDCD 
ACGCBB 
ACGGCA 
ACHDCC 
ADDFFA 
ADECFA 
ADEEED 
ADEFDD 
ADEGBA 
ADFCFB 
ADFDFC 
ADFFCD 
ADFGBB 
ADGDDD 
ADGDFB 
ADHCDB 
ADHDDC 
ADHDEB 
AEAEEA 
AEBFEA 
AEEBFA 

AADDDD AADDEC 
AADEER 
AAEEEA 

ABEDDD ABEDEC ABFCDD 
ARF EBD 
ABFEAC ABFEEA 

ABFRDC 
ABGCCD 

ACCFBC 

ADDDFA 
AFDEFD 
ADDEFB ADDGDB AEFGEB 
ACEEDD ACFDDD AEEEFD 
AEEFFC AFDFFC 
ADGEFA 
AEGGDR 
ADHEEA AHEEFA 
ACCCC€ AEEEEE AEEGEC 
AEFDFD 
ADEFFS ADEGEB AGDFFB 

AEC-GCC 
ACFGBC ADGGCB AGGCFB 
AECFFP AFFFFA 
AECEFb AEFFFB AFCFFB 
ADFFFA 

AEt-FDE AEEGDD AGDDFD 
AGGGBB 
A I F F E C  
AHF CCE 
ADDGEA AGEFFA 

ADEEFC AFGCFC 
ADLGDC AEFGCD AEGDFC 

AEGEFB 
ADFGCC 
AEFFCE AGCDFC 
AEBEEB AFGBFB 
AEGDDE AGDGCD 

AHEEBE 
AHDDDE AHDDFC AHDECE 
AHDEFB 

AEFGAB 

AEFBFB 
AEGECF 
AFAFCC 
AFCEFC 
AFCEFA 
AGCCFB 
AHCDFR 
AHDGCC 
AHECDE 
AHHCCC 
A I BDCC 
A I CDDC 
A I CDEB 
A I DECD 
A I DFCC 
A I GCCC 
BBBDCC 
BBCDDC 
BBCDEB 
BBDECD 
BBDFCC 
BBGCCC 
BCBCCC 
BCCDCC 
BCDCDB 
BCDDDC 
BCDDEB 
BCEECD 
BCEEEB 
BCEFCC 
BCHCCC 
BDCE t C  
BDDCDB 
BDDEDC 
BDDEEB 
BDDFBB 
BDDFCC 
BDEEDD 
BDEEEC 
BDEFCD 
BDEGCC 
BDFBCC 
BDFFBD 
BDGDCD 
BEECEB 
BEFCEC 
BFCRFB 
cccccc 
CCDDCC 
CCEDDC 
CCEECC 
CDEEDC 
CDFEEC 
C DGC DC 
CDGDEC 
CDHDCD 
CEEEEC 
CEFEED 
CEFEFC 
CEGCEC 
CEGDED 
CFFEEE 
CFFFFC 
CFFGEC 
DEFFED 
DEFGDD 
DHDEED 

AGCGCC 

AIDDDD AIDDEC 
A I DEEB 

RBDDDD BBDDEC 
BBDEEB 

BFHFCC 
RFHEEB 
BCEDDD BCEDEC BCFCDD BFHDEC 
BCFEBD BDEGDB 
BEHDDC BFHDDD 
BCFPDC BDCEDB 
BCGCCD BDHDCC 

BFGGCC 
BEDDEB BEDFCB BFGEFB 
BEFDED BFGDFC 
BDEFEE BEDEFB 
BEEFBB 
BEDEEC BEDFDC BEEEED BEEEFC BEFDFC BEFGCC 
BDFCDC BDFDDD BEFFCD BEGCDC BFEEFD BFEFFC 
BDGCCC aFCEEC BFEEEE BFEGEC 
BEFFDD BEEGDC 

BEBECC 
BEEFFR BEEGEB BEFCFB 
BEGDDD BFEFOE BFEGDD 
BEFFBC BFFFFB 
BFFDFD 

CCF FCC 
CCFDDD CCFDEC 

CDFEDD 
CGEEFD 
DDFFDD 
CFFEFD 
EFGEFE 
CCEEEE 
CEFFDD 
CHEDFD 
EGEGEE 
CHDDED 
CHFCEE 
CFFGDD 
FFFFFF 

CDFFCD CDGDDD DGEFEE DHEEEE 
CIDDDD CIEDDE DGEFFD 
DDGEDD EGEFFE 
CIEDFC DFFFEE DHEEFD 

CIEECE 
CHDDFC CHEDEE CHEFCE 

DECEED 
CIDECD DFFFFD 
CGEFFC CGEGOD CICDCD EFFFFE 



2T. 24 
THE F IFTY POLYHEDRA WITH 14 VERTICESeo HAMILTON CIRCUITS 

GRACE 
L I S T  
MOO 
l e e  
2 e e  
b e e  
4 e  e 
5 e e  
6 e e  
7ee 
8 e e  
9.0 

100. 
l l e e  
12.. 
1 3 e e  
14. e 
1 5 e e  
1 6 e  e 
1 7 e e  
l 8 e e  
190. 
20.0 
2 1 e e  
220. 
2 3 e e  
24e 
25.. 
2 b e e  
27e e 

29. e 
3 0 e e  
310. 
3 2 e e  
3 3 e e  
3 4 e e  
35,. 
36. 
3 7 e e  
38.0 
39.. 
4 0 e  6 

4 1 e e  
420. 
43ee 
44. e 
4 5 e e  
460. 
47,. 
4 8 e e  
4 9 e e  
501 .  

280. 

BDHOGBB 
BOIECOB 
BOHFGBD 
B€tFDFC 
BOFOFOC 
CJHECCE 
CJCDtlFC 
C I COHFD 
BCCCCCB 
BCCCEBC 
BCCDEBB 
BCOEBCB 
BCCFCEC 
BCFCFCB 
CHFICEC 
BCCCDBD 
BCCOGEC 
BOFOFCB 
BOGECEC 
BCCEFDB 
BCEBEDB 
BOJEBOB 
BO JCDOB 
BCCFFBC 
BDECEDB 
BDJDECC 
BCCHFBC 
BEJFDEC 
BC IFCFB 
BO JDEBB 
BCOFBOB 
BCCFBEB 
BCDFCEB 
BFCGDEB 
BC DHE B C 
BCGDBEB 
BDCBBOB 
BCHCCBB 
BDFBECC 
BCPGBOC 
BC IEBFB 
BEHECFB 
BDFBEBB 
BCFBFBB 
BOCEBEB 
CKEIECC 
BECECEB 
BCFBGCB 
BC I EGBC 
BDHEBFB 



2T. 25 

V O V P 3 L Y G O N A L  G R A P H S  

V E R T I C E S  VO. 

0 1 
R A I  1rR:ACA 

10 5 
10A:lrll:AACA 
1 O A : l r l O t A B D A  
1OA: l r  1 1  1 A B D A  
10A:lrlO:AEBB 
10A:lrlO:AECA 

12 30 
12Allrl4:AAACA 
12A8 1 r 1 3  I A A B D A  
1 2 A g l r l 4 t A A B D A  
1 2 A t l r l 3 I A A E A A  
12A:lr138AAEBB 
1 2 A t l r l 3 8 A A E C A  
1 2 A l l r l 4 1 A A E C A  
12A 1 r 14 : A B B C A  
12A: Ir 13: A B C D A  
12A: l r  1 3 1  A B E A B  
12A 8 l r  1 2 1  A B F B B  
12A: l r  13: A B F B B  
1 2 A I l r 1 2 I A B F C A  
12A: l r  138 A B F C A  
12A:lrl4IABFCA 
12Allrl2:ACACA 
12A 8 1 ~ 1 2 :  A D A D A  
12Allr12:ADBEA 
12A: l r  138 A D B E A  
12A 8 I r  1 4  I A D B E A  
12A:lrl4:AFDEA 
12A:lr12:AGBDB 
12A 8 l r  12 I A G D D A  
12A:lrl28AGCDB 
12A:lr12:AGEBB 
12A: 1 ~ 1 3 :  A G E B B  
12A8 lr12:AGECA 
12A: 1r13: A G E C A  
1 2 A ~ l r 1 3 : B B E B B  
12ACA: 8 r 8 :  ACA 



2T.4 NONPOLYGONAL PLANAR GRAPHS, n = 8 ,  10, 12 .  

2T.40 

2T. 41 

2T.42 

d e l e t e d  

Nonpolygonal graphs mapped on Hamilton c i r c u i t s .  

Nonpolygonal graphs for which chemical examples 
are known. 

N . B .  More detai led f igures for some of the above are avai lable  i n  2T.5. 
2T.25 summarizes t h i s  list which i s  purportedly complete. 



2T.410 

NONPOLYGONAL GRAPHS MAPPED ON HAMILTON CIRCUITS 

( 8A: 1,8: ACA) ( 12A: 1,14 : AAACA) (12A: 1,12: AGCDB) 

(12A: 1,12: AGDDA) (12A: 1,lb:ABBCA) 

(12A: 1,14: AAFXA) 

( ~ O A :  1 , io :  AECA) ( 12ACA: 8,8 : ACA ) ( 12A : 1,12 : AGEBB ) 

Q 
( ~ O A  : 1, i o  : ABDA ) (12A: 1,12: AGBDB) (12A: 1,12: AGECA) 

( ~ O A :  1 ,ii : ABDA) (12A: 1,lb:ABFCA) 



2T.411 

Q 
( 12A: 1,12: ABFBB) (12A: 1,12: ADBEA) 

Q 
( 12A : 1,13: AAEXA) ( 12A: 1,14: ADBEA) 

( 12A : 1,14 : AABDA) (12A:1,13: ADBEA) 

( 12% : 1,13 : ABFBB ) ( 12A : 1,14 : AFDEA ) 

( 12A: 1,13 : ABCDA) ( 12A : 1,13 : AGECA) (12A: 1,13:ABFCA) 

(12A:1,13: AABDA) ( 12A : 1 ,13 : ABW 



I 

sa& 

(8A: 1 ,8 :ACA)  

( ~ O A :  1 ,~O:ABDA) 

( 12ACA: 8,8 :ACA) 

( 12A: 1,14 : W C A )  

2T. 420 
NONPOL YGONAL GRAPHS WITH KNOWN CHEMICAL EXAMPLES 

MAPPING ON POLYHEDRAL CHEMICAL EXAMPLE 
WITH RRI NO. UNDERLYING GRAPH FORM 

m 
7038 

7044 

@Do 
7404 

7213 



2T.421 

CODE - 

(12A: 1,12: AGECA) 

(12A: 1,13 :AGECA) 

( 1 2 A  : 1,12 : ABFBB ) 

( 12A: 1,12 : ABFCA) 

MAPPING ON 
UNDERLYING GRAPH 

POLYHEDRAL 
FORM 

CHEMICAL EXAMPLE 
WITH NO. 

7211 

7393 

9603 

7296 



2T.5 FIGURES FOR GRAPHS, n 5 1 2 .  

2T. 50 n = 0 ,  2 ,  4 ,  6 a l l  forms, and n = 8 polyhedra. 

Besides t h e  f i g u r e s ,  codes and examples, s e v e r a l  
a l t e r n a t i v e  formula r ep resen ta t ions  a r e  given a s  
i 1 l u s  t r a t i o n s .  

2T.51 n = 8, Planar unions wi th  examples. 

2T. 52 

2T. 53 

n = 10, Polyhedra and p lanar  unions w i t h  examples. 

n = 1 2 ,  Polyhedra wi th  examples. 

2T. 54 n = 1 2 ,  Polyhedra and p lanar  unions f o r  which chemical 
examples have been found. 

I 



GRAPHS OF POLYGONS OF ORDERS 0 - 6 

POLYGONAL POLYHEDRAL PLANAR MESH 
REPRESENTATION FORM DIAGRAM 

0 - 

w” 
BB 

0 

0 0 
co 

A 
cco 

A 

w 
Q 

SPAN LIST 

11 

2222 

1313 

234234 

151515 



2T.  500 AND POLYHEDRA OF ORDER 8 

INCIDENCE 
MATRIX 

R R I  NUMBER 
OF EXAMPLE CHORD L I S T  EXAMPLE 

0 29 2 

7 

-?I I 17 
17 
1 2  

1754 

2 3 4  
1 1 1 1  

1 1 1 2  11 3 

2 3 4  
2 

2 3 4 5 6  
1 1  1 

1 1  
1 

-- 

1 1  
1 

12 41 
2 3  12  
3 4  34 

36 20 

1 2  41 
2 3  1 3  
34  2 4  

3618 

12  45 13 
2 3  56 25 
3 4  6 1  46 5262 

2 3 4 5 6  -1: 4 

2 5  

1 2  45 12 
2 3  56 34 
3 4  61 56 5256 



PLANAR MESH 
DIAGRAM 

POLYHEDRAL 
FORM 

pcii'Gjjj-AL 

REPRESENTATION SPAN LIST 

A 1 5 2 2 4 4  

CCCO 153153  

GAUCHE 333333  

23635256  

24642464 

El 
CUBANE 

35353535 



2T. 501 

1 
1 

2 4  

2 
1 3  

1 5  

RRI NUMBER 
OF EXAMPLE 

INCIDENCE 
MATRIX CHORD LIST EXAMPLE 

2 3 4 5 6  
2 1 1 1  12 45 12 

23 56 35 
3 4  61 46 1 1  l2 3 

1 
5257 

1 1 1 4  1 5  

2 3 4 5 6  
2 1 1 1  

1 2  45 12 
2 3  56 36 
3 4  61 45 

5252 

2 3 4 5 6  

4 

12 45 14 
2 3  56 25 
34  61 36 

NO EXAMPLE 

2 3 4 5 6 7 8  
1 1  11 1 

1 1  
1 

1 1  
1 

1 1  
1 

12 56 13 
2 3  67 25 

45 81 68 
34  7a 47 61s"' 6402 

2 3 4 5 6 7 8  

12 56 1 4  
23 67 27 
3 4  78 36 
45 ai 58 



2T.510 
UNIONS OF 8 VERTICES 

POLYGONAL 
REPRESENTATION 

POLYHEDRAL 
FORM 

RRI NUMBER 
OF EXAMF'LE 

4 

EXAMPLE 

6452 

6381 

6400 (43 

A 6389 

6399 

A 6415 



2T.511 

POLYGONAL 
REPRESENTATION 

POLYHEDRAL 
r UKM 
---- - EXAMPLE 

8 3  

KRI NUMBER 
OF EXAMPLE 

6388 

6376 

6401 



POLYGONAL 
REPRESENTATION 

TRIVALENT POLYGONS OF 10 VERTICES 

POLYHEDRAL 
FORM EXAMPLE 

2T. 520 

RRI NUMBER 
OF EXAMPLE 

7036 

7033 

7034 

6550 

CFOEC 



2T.521 

RRI NUMBER 
OF EXAMPLE 

POLY GONAT, 
‘REPRESENTATION EXAMPLE 

9537 

A 6561 

A 
RWDF) 



2 T . 5 2 2  

POLYGONAL 
REPRESENTATION 

POLYHEDRAL 
FORM EXAMPLE 

RRErn 

ABBCR 

0 
$e 

D 

8% 
RRI NUMBER 
OF EXAMPLE 

7010 

6852 

6999 

7026 



2T.523 

POLYHEDRAL 
FORM EXAMPLE 

RRI NUMBER 
OF EXAMPLE 

6782 

7022 

7023 

7015 

7006 



2 T . 5 2 4  

POLYGONAL 
REPRESENTATION 

POLYHEDRAL 
FORM 

RRI NUMBER 
EXAMPLE OF EXAMPLE 

RECEC 

7031 

7028 



2T. 525 
---- KKL NUMBER 
OF EXAMPLE 

POLYHEDRAL 
FORM EXAMPLE 

@ RFCEB 

RFDER 

AFFBB 

7021 

7020 

7042 



POLYGONAL 
REPRESENTATION 

POLYHEDRAL 
FORM 

2T. 526 
RRI NUMBER 

EXAMPLE OF EXAMPLE 

0 
Q 881 

7014 

6996 

6863 

7025 



TR IVALENT POLYHEDRA OF 12 VERT I CES 

POLYHEDRAL GRAPH POLYGONAL GRAPH WITH ISOMORPHS 

BCEFDB 

BEBEDB 

@ BEHECC 

a. 530 

EXAMPLE 
$ 

& 
7233 

& 
7341 

. 



POLYGONAL GRAPH W I T H  ISOMORPHS 

BEGEBC BFBFCC 

BDFOEC BEGECD 

BDGDEB 

BFBFBB 

CGEGEC 

C t F f f D  

CICCCC 

BFCFDC 

C i F f f  C DtFDFD 

POLYHEDRAL GRAPH EXAMPLE 

@ 
7392 



2T. 54!? POLYGONS OF 12 VERTICES WITH EXAMPLES 

POLYHEDRON EXAMPLE 
RRI NUMBER 
OF EXAMPLE POLYGON 

7233 

7341 
BMEBB 

7392 

CGEOEC 

7411 

0 7409 

7271 

\ @ 7369 

7120 



2T.541 

RRI NUMBER 
iluumw2 PDLYGON POLY" EXAMPLE 

7358 

7388 

7373 

7389 

7390 

\ 0 7378 

7375 



2T.542 

POLYGON POLYHEDRON EXAMPLE 
RRI NUMBER 
OF EXAMPLE 

7370 

7174 

7146 

9606 

7277 

7381 

7387 

7372 



2T. 543 
RRI NUMBER 
OF EXAMPLE 

9558 

POLYGON POLYHEDRON EXAMPLE 

7230 

7276 

7379 

RIBFBB 

7136 

RJBFCR 

7367 

7396 

9601 



2T. 544 

RRI NUMBER 
OF EXAMPLE EXAMPLE POLYGON POLYHEDRON 

7097 

@ RIGECR 

7355 

Q e 9602 

9585 

7376 

0 7391 



POLYHEDRA OF ORDERS 14-24 FOR WHICH CHEMICAL GRAPHS ARE K N O W  2T.60 

POLYGONAL POLYHEDRAL 
REPRESENTATION FORM 

19 BCCEFDB 

1 Y  BDGBBDB 

R R I  NUMBER 
EXAMPLE OF EXAMPLE 

9652 

7529 

7511 

13 BDGEGEC 

7623 

16 BDGEHECB 

7622 

16 BDGEIGDB 

9 706 

18 BCCEJHCCB 



2T.61 

POLYGONAL 
mrnnaslTTATION __-..----- RRI NUMBER 

OF EXAMPLE EXAMPLE 

11505 

18 BCEKGBBCB 

11506 

18 BCEKGCBBB 

7636 

18 BCELJCDDB 

7653 

18 CKIELJHFC 

7692 

20 BCDGEK IFBC 

9725 

22 BCCENLCEFOB 



2T.62 

POLYGONAL 
REPRESENTATION 

2q 0- BEQGBBEGBBEB 

POLYHEDRAL 
FORM EXAMPLE 

RRI NUMBER 
OF EXAMPLE 

9733 

9732 

23 CUCDODGEHECO 



2T. 70 

n,,AnnT In...---. - -7  
vu-~u~ inLvALhNT GRAPHS DERIVED FROM TRIVALENT GRAPHS. n < 8 

EXAMPLE RRI # CODE GRAPH 

655 

s w7 2035 

A 2030 

8 8777 ( $5AACA) 

€2 8964 ($5ABCB) 

3948 ($5ACDR) 



2 T .  71 

RRI # CODE 

($5AEBB) 

GRAPH EXAMPLE 

5272 

( $A : SAECA) 4482 

($B:5AECA) 5 2 7 3  

($5BCCB) 3966 

($5CECC) 4615 

2029 

3418 


